Respuesta :

Answer:

Neither

Step-by-step explanation:

To check whether an ordered pair (a,b)(a,b)left parenthesis, a, comma, b, right parenthesis is a solution of an equation, substitute these values into the equation and determine if the resulting equality is true or false.

To check whether (\blue{1},\pink{5})(1,5)left parenthesis, start color #6495ed, 1, end color #6495ed, comma, start color #ff00af, 5, end color #ff00af, right parenthesis is a solution of the equation, let's substitute \blue{x}=\blue{1}x=1start color #6495ed, x, end color #6495ed, equals, start color #6495ed, 1, end color #6495ed and \pink{y}=\pink{5}y=5start color #ff00af, y, end color #ff00af, equals, start color #ff00af, 5, end color #ff00af into the equation:

\begin{aligned}7\blue{x}-2\pink{y}&=-5\\ 7\cdot\blue{1}-2\cdot\pink{5}&=-5\\ 7-10&=-5\\ -3&=-5\end{aligned}

7x−2y

7⋅1−2⋅5

7−10

−3

 

=−5

=−5

=−5

=−5

Since -3\neq-5−3

=−5minus, 3, does not equal, minus, 5, we obtained a false statement, so (1,5)(1,5)left parenthesis, 1, comma, 5, right parenthesis is not a solution of the equation.

Hint #33 / 4

To check whether (\blue{-1},\pink{1})(−1,1)left parenthesis, start color #6495ed, minus, 1, end color #6495ed, comma, start color #ff00af, 1, end color #ff00af, right parenthesis is a solution of the equation, let's substitute \blue{x}=\blue{-1}x=−1start color #6495ed, x, end color #6495ed, equals, start color #6495ed, minus, 1, end color #6495ed and \pink{y}=\pink{1}y=1start color #ff00af, y, end color #ff00af, equals, start color #ff00af, 1, end color #ff00af into the equation:

\begin{aligned}7\blue{x}-2\pink{y}&=-5\\ 7\cdot(\blue{-1})-2\cdot\pink{1}&=-5\\ -7-2&=-5\\ -9&=-5\end{aligned}

7x−2y

7⋅(−1)−2⋅1

−7−2

−9

 

=−5

=−5

=−5

=−5

Since -9\neq-5−9

=−5minus, 9, does not equal, minus, 5, we obtained a false statement, so (-1,1)(−1,1)left parenthesis, minus, 1, comma, 1, right parenthesis is not a solution of the equation.

Neither of the ordered pairs is a solution of the equation.

Answer:

NEITHER

Step-by-step explanation:

I got it correct on Khan

RELAXING NOICE
Relax