Drag each complex number to the correct location on the image.
Simplify the complex numbers and match them with the correct values.

numbers:
-i^25
i^16
i^17
-i^32
i^9x-i^11
i^23/-i^11

Values
1
-1
i
-i

Respuesta :

Answers:

In photo below

Explanation:

I got it correct in my test :)

Ver imagen websitetechie

The required match of complex numbers is given by
1 = [tex][i^{16},][/tex],  
-1 = [tex]-i^{32}, i^9*-i^{11}, i^{23}/-i^{11}[/tex]},
i = [tex]{i^{17}[/tex],
-i = {[tex]-i^{25}[/tex]}

Perfect matches of a simplified complex number to be identified.


What is a complex number?

The number that constitutes of real and imaginary numbers are called complex numbers. Standard form of complex number = a + bi


i² = -1 , i³ = -i and  [tex]i^4=1[/tex]

1)
[tex]=-i^{25}\\=-(i^{24})*i\\=-i(i^4)^7\\=-i[/tex]


2)
[tex]=i^{16}\\=(i^{4})^4\\=1[/tex]

3)
[tex]=i^{17}\\=(i^4)^4*i\\=i[/tex]


4)
[tex]=-i^{32}\\=-(i^4)^8\\=-1[/tex]


5)
[tex]=i^9*(-i^{11})\\=i*(i^4)^2*(-i^8*i^3)\\=i*(-i)\\=i*[(-1)(-i)]\\=i*i\\=-1[/tex]


6)
[tex]= i^{23}/-i^{11}\\= -i^12\\=-(i^4)^3\\= -1[/tex]

Thus, the required match of complex numbers is given by
1 = [tex][i^{16},][/tex],  
-1 = [tex]-i^{32}, i^9*-i^{11}, i^{23}/-i^{11}[/tex]},
i = [tex]{i^{17}[/tex],
-i = {[tex]-i^{25}[/tex]}

Learn more about complex numbers here:
https://brainly.com/question/28007020

#SPJ5

ACCESS MORE
EDU ACCESS
Universidad de Mexico