Respuesta :
Answer:
v = 42.28 m/s
Explanation:
It is given that,
The horizontal speed of a baseball, [tex]u_x=42\ m/s[/tex]
The pitcher throws the baseball from a height of 1.25 meters, h = 1.25 m
Firstly finding t i.e. the stone takes to reach the ground. Using second equation of motion as follows :
[tex]d=ut+\dfrac{1}{2}at^2[/tex]
a = -g and u = 0
[tex]d=-\dfrac{1}{2}gt^2\\\\t=\sqrt{\dfrac{-2d}{g}} \\\\t=\sqrt{\dfrac{-2\times 1.25}{9.8}} \\\\t=0.5\ s[/tex]
Vertical component of the velocity is :
[tex]v_y=gt\\\\v_y=9.8\times 0.5\\\\v_y=4.9\ m/s[/tex]
Resultant velocity,
[tex]v=\sqrt{v_x^2+v_y^2} \\\\v=\sqrt{42^2+4.9^2} \\\\v=42.28\ m/s[/tex]
So, the resultant velocity of the ball before it hits the ground is 42.28 m/s.
Otras preguntas
