Respuesta :
Answer:
[tex]x = 7[/tex]
Step-by-step explanation:
Given
[tex]m_2 = 6x + 8[/tex]
[tex]m_6 = 8x - 6[/tex]
Required
Determine x when both lines are parallel
For parallel lines, slopes must be equal.
i.e.
[tex]m_1 = m_2[/tex]
In this case,
[tex]m_6 = m_2[/tex]
Substitute values for m6 and m2
[tex]8x - 6 = 6x + 8[/tex]
Collect Like Terms
[tex]8x - 6x = 8 + 6[/tex]
[tex]2x = 14[/tex]
Solve for x
[tex]x = 14/2[/tex]
[tex]x = 7[/tex]
