Respuesta :

Answer:

[tex]F = 45.4[/tex]

[tex]S = 12.68[/tex]

Step-by-step explanation:

Given

Represent the sons age with S and the father's age with F

[tex]S * F = 576[/tex]

[tex]F = 5S - 18[/tex]

Required

Determine F and S

Substitute 5S - 18 for F in the first equation

[tex]S * (5S - 18) = 576[/tex]

Open Bracket

[tex]5S\² - 18S = 576[/tex]

Equate to 0

[tex]5S\² - 18S - 576 = 0[/tex]

Solve using quadratic formula:

[tex]S = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

Where

[tex]a = 5[/tex]

[tex]b = -18[/tex]

[tex]c = -576[/tex]

[tex]S = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

[tex]S = \frac{-(-18)\±\sqrt{(-18)^2 - 4*5*-576}}{2 * 5}[/tex]

[tex]S = \frac{18\±\sqrt{324 + 11520}}{10}[/tex]

[tex]S = \frac{18\±\sqrt{11844}}{10}[/tex]

[tex]S = \frac{18\±\108.8}{10}[/tex]

[tex]S = \frac{18+108.8}{10}[/tex] or [tex]S = \frac{18-108.8}{10}[/tex]

[tex]S = \frac{126.8}{10}[/tex]  or [tex]S = \frac{-90.8}{10}[/tex]

[tex]S = 12.68[/tex] or [tex]S = -9.08[/tex]

Since, age can't be negative.

We have that:

[tex]S = 12.68[/tex]

Recall that:

[tex]F = 5S - 18[/tex]

[tex]F = 5 * 12.68 - 18[/tex]

[tex]F = 45.4[/tex]

Hence:

The father is 45 years old and the son is 13 years old (Approximated)

RELAXING NOICE
Relax