Answer:
28.7 feet
Step-by-step explanation:
The equation of a parabola is in the form:
[tex]\frac{x^2}{a^2}+ \frac{y^2}{b^2}=1\\ \\where\ (\pm a,0)=major\ axis,(0,\pm b)=minor\ axis[/tex]
The bridge can be represented as:
Since the width of the bridge is 82 feet, therefore 2a = 82, a = 41
[tex]\frac{x^2}{41^2} +\frac{y^2}{b^2}=0\\ \\The\ point\ (9,28)\ lie\ on \ the\ ellipse\ hence\ substituting:\\\\\frac{9^2}{41^2} +\frac{28^2}{b^2}=1\\\\0.048+\frac{28^2}{b^2}=1\\\\\frac{28^2}{b^2}=1-0.048=0.952\\\\b^2=824\\\\b=\sqrt{824}\\ \\b=28.7 \\\\[/tex]
The arch is 28.7 feet from its center