Answer:
A) [tex]\frac{P}{p} + \frac{1}{2} v^2 + gh = k\\[/tex]
B ) 53.9 kN/m^2
Explanation:
a) Bernoulli's equation and continuity equation for a pipe flow
[tex]\frac{P}{p} + \frac{1}{2} v^2 + gh = k[/tex]
[tex]\frac{P}{p}[/tex] = pressure head
[tex]\frac{1}{2}v^2[/tex] = velocity head
gh = potential head
k = constant
p = density
b) determine the air pressure that must be maintained
Given data :
Discharge rate( R ) = 20 liters/sec ≈ 0.02 m^3
Bore diameter ( d ) = 0.06 m
first we calculate the velocity in the 6 cm bore
v = [tex]\frac{R }{\frac{\pi }{4} *d^2}[/tex] ------- (2)
R = 0.02
d = 0.06
insert the given values into equation 2
V = 7.07 m/s
next we apply the Bernoulli's equation by rewriting it as follows
[tex]\frac{P}{pg} + \frac{1}{2g} v^2 + h = k[/tex]
[tex]\frac{1}{2g}v^2[/tex] ( velocity head ) = [tex]\frac{7.07^2}{2*9.81}[/tex] = 2.55
next we will apply the use of energy conservation law on the surface of water in tank and that on the roof :
Note : H1(frictional head loss ) = 45cm = 0.45 m , g = 9.81
applying the energy conservation law
[tex]\frac{P1}{pg} + \frac{1}{2g} v_{1} ^2 + h1 =[/tex] [tex]\frac{P2}{pg} + \frac{1}{2g} v_{2} ^2 + h2[/tex]
[tex]\frac{P1}{pg}[/tex] = 0 + 2.55 + 2.5 + 0.45
therefore ; P1 = 9.81 * 5.55 = 53.9 kN/m^2