Answer:
A) 61.628 Ib/ft^2
B) 3.271 Ibf
Explanation:
diameter of pipe = 3.28 inches
diameter of nozzle = 1.64 inches
flow rate = 26.5 gpm =
convert the flow rate to ft^3/s
= 26.5 gpm * 0.133681 ft^3/gallons * 1 min/ 60 seconds
= 0.059 ft^3/s
next we calculate the velocity in the pipe
Q = [tex]\frac{\pi }{4} d^{2} _{1} V1[/tex]
Q = 0.059
d1 = (3.28 / 12 )
hence V1 = ( 0.059 ) / (0.0747 * 0.7854 ) = 1 .01 ft/s
velocity in the Nozzle
Q = [tex]\frac{\pi }{4} d^{2} _{2} V2[/tex]
Q = 0.059
d2 = ( 1.64 /12 )
hence V2 = ( 0.059 ) / ( 0.7854 * 0.0187 ) = 4.02 ft/s
A) To determine the Minimum static pressure we apply the Bernoulli's equation
since the pipe and the Nozzle are at the same height the equation will be modified as
[tex]\frac{P1}{w} + \frac{V^2_{1} }{2g} = \frac{P2}{w} + \frac{v_{2} ^2}{2g}[/tex]
where w = 62.4 Ib/ft^3
V1 = 1.01
V2 = 4.02
P1 = ?
P2 = 0
g = 9.81
hence P1 ( static pressure ) = 62.4 * 0.772 = 61.628 Ib/ft^2
B) evaluate the axial force of the Nozzle assembly on the pipe flange
attached below is the detailed solution
Fx( axial force ) = -0.345 + 3.616 = 3.271 Ibf