Answer:
[tex]v(t) = \frac{-cos4t}{5} + \frac{6}{5} Volts[/tex]
Explanation:
Given
current I = 4sin4t
capacitance C = 5F
v(0) = 1
The voltage across the capacitor is expressed as:
[tex]v(t) = \frac{1}{C} \int\limits^t_{t_0} {i(t)} \, dt + v(t_0)[/tex]
Given v(0) = 1, means at t = 0, v(t0) = 1
Substitute
[tex]v(t) = \frac{1}{5} \int\limits^t_{0} {4sin4t} \, dt + 1\\v(t) = \frac{1}{5} [\frac{-4cos4t}{4} ] + 1\\\\v(t) = \frac{1}{5} (-cos4t)+1 + \frac{1}{5}\\v(t) = \frac{-cos4t}{5} + \frac{6}{5}[/tex]