A normally distributed population has a mean of 500 and a standard deviation of 60. Determine the probability that a random sample of size 25 selected from the population will have a sample mean greater than or equal to 515.

Respuesta :

Answer:

The value is  [tex]P(\= X \ge 515 ) = 0.8944[/tex]

Step-by-step explanation:

From the question we are told that

   The mean is  [tex]\mu = 500[/tex]

   The standard deviation is  [tex]\sigma = 60[/tex]

    The sample size is  n  =  25

Generally the standard error of mean is mathematically represented as

       [tex]\sigma _{\= x } = \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]\sigma _{\= x } = \frac{60}{\sqrt{25} }[/tex]

=>    [tex]\sigma _{\= x } = 12[/tex]

Generally the  probability that a random sample of size 25 selected from the population will have a sample mean greater than or equal to 515 is  mathematically represented as

         [tex]P(\= X \ge 515 ) = 1 - P(\= X < 515)[/tex]

Here  [tex]P(\= X < 515) = P(\frac{\= x - \mu }{\sigma_{\= x }} < \frac{515 - 500}{12} )[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

          [tex]P(\= X < 515) = P(Z < 1.25 )[/tex]

From the z table the probability of  (Z  <  1.25  )

    [tex]P(Z < 1.25 ) = 0.10565[/tex]

So

    [tex]P(\= X < 515) = 0.10565[/tex]

So

    [tex]P(\= X \ge 515 ) = 1 - 0.10565[/tex]

=>  [tex]P(\= X \ge 515 ) = 0.8944[/tex]

RELAXING NOICE
Relax