Answer:
The volume [tex]V = \frac{75}{2}[/tex] units
Step-by-step explanation:
From the question we are told that
The equation of the plane is [tex]z = 2x + 5y + 1[/tex]
The range of the rectangle on the x and y axis is [tex]\{ (x, y) | -1 \le x \le 0 , 1 \le y \le 4 \}[/tex]
Generally the volume is mathematically represented as
[tex]V = \int\limits^{4}_{1} \int\limits^0_{-1} {z} \, da[/tex]
Here stands for the area of the solid
So
[tex]V = \int\limits^{4}_{1} \int\limits^0_{-1} {(2x + 5y + 1 )} \, dxdy[/tex]
[tex]V = \int\limits^{4}_{1} [{(\frac{2x^2}{2} + 5xy + x )} ] | \left \ 0} \atop {-1}} \right. \, dy[/tex]
[tex]V = \int\limits^{4}_{1} [{(x^2 + 5xy + x )} ] | \left \ 0} \atop {-1}} \right. \, dy[/tex]
[tex]V = \int\limits^{4}_{1} [{((0)^2 + 5(0)y + (0) )} ] -[{((-1)^2 + 5(-1)y + (-1) )} ] \, dy[/tex]
[tex]V = \int\limits^{4}_{1} 5y \, dy[/tex]
[tex]V = 5 [ \frac{y^2}{2} ]|\left \ 4 } \atop { 1 }} \right. \, dy[/tex]
[tex]V = 5( [ \frac{4^2}{2} ] - [ \frac{1^2}{2} ] )[/tex]
[tex]V = \frac{75}{2}[/tex]