Answer:
The balanced chemical equation for the reaction can be computed as:
[tex]\mathbf{Cr_2O_3_{(s)}+ 3H_2S_{(g)} \to Cr_2S_3_{(s)} + 3H_2O_{(l)}}[/tex]
2.103 moles of [tex]Cr_2O_3_{(s)}[/tex] is being required.
Explanation:
The balanced chemical equation for the reaction can be computed as:
[tex]\mathbf{Cr_2O_3_{(s)}+ 3H_2S_{(g)} \to Cr_2S_3_{(s)} + 3H_2O_{(l)}}[/tex]
Recall that numbers of moles = [tex]\dfrac{mass}{molar \ mass}[/tex]
∴
number of moles of Cr2S3 = [tex]\dfrac{421}{200.19}[/tex]
number of moles of Cr2S3 = 2.103 moles
It obvious from the balanced equation that:
1 mole of [tex]Cr_2S_3_{(s)}[/tex] requires 1 mole of [tex]Cr_2O_3_{(s)}[/tex]
Thus; 2.103 moles of [tex]Cr_2S_3_{(s)}[/tex] = 2.103 × (1/1) moles of [tex]Cr_2O_3_{(s)}[/tex]
= 2.103 moles of [tex]Cr_2O_3_{(s)}[/tex]