MULTIPLE CHOICE CALCULUS

1) An object moves along a line so that its position at time t is s(t) = t^4 - 6t^3 - 2t - 1.

At what time t is the acceleration of the object zero?

A. at 3 only

B. at 0 and 3 only

C. at 0 only

D. at 1 only

2) If f(x) = e^x (sin x + cos x), then f'(x) =

A. 2e^x (cos x + sin x)

B. e^x cos x

C. e^x (cos^2x - sin^2x)

D. 2e^x cos x

Respuesta :

Space

Answer:

1) B. at 0 and 3 only

2) D. 2eˣcosx

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Terms/Coefficients
  • Factoring
  • Quadratics

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Addition/Subtraction]:                                                          [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Derivative Rule [Product Rule]:                                                                              [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Trig Derivative: [tex]\displaystyle \frac{d}{dx}[sinu] = u'cosu[/tex]

Trig Derivative: [tex]\displaystyle \frac{d}{dx}[cosu] = -u'sinu[/tex]

eˣ Derivative: [tex]\displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'[/tex]

Step-by-step explanation:

*Note:

Velocity is the derivative of position.

Acceleration is the derivative of velocity.

Question 1

Step 1: Define

s(t) = t⁴ - 6t³ - 2t - 1

Step 2: Differentiate

  1. [Velocity] Basic Power Rule:                                                                            s'(t) = 4 · t⁴⁻¹ - 3 · 6t³⁻¹ - 1 · 2t¹⁻¹
  2. [Velocity] Simplify:                                                                                            v(t) = 4t³ - 18t² - 2
  3. [Acceleration] Basic Power Rule:                                                                    v'(t) = 3 · 4t³⁻¹ - 2 · 18t²⁻¹
  4. [Acceleration] Simplify:                                                                                     a(t) = 12t² - 36t

Step 3: Solve

  1. [Acceleration] Set up:                                                                                       12t² - 36t = 0
  2. [Time] Factor:                                                                                                    12t(t - 3) = 0
  3. [Time] Identify:                                                                                                  t = 0, 3

Question 2

Step 1: Define

f(x) = eˣ(sinx + cosx)

Step 2: Differentiate

  1. [Derivative] Product Rule:                                                                              [tex]\displaystyle f'(x) = \frac{d}{dx}[e^x](sinx + cosx) + e^x\frac{d}{dx}[sinx + cosx][/tex]
  2. [Derivative] Rewrite [Derivative Property - Addition]:                                  [tex]\displaystyle f'(x) = \frac{d}{dx}[e^x](sinx + cosx) + e^x(\frac{d}{dx}[sinx] + \frac{d}{dx}[cosx])[/tex]
  3. [Derivative] eˣ Derivative:                                                                               [tex]\displaystyle f'(x) = e^x(sinx + cosx) + e^x(\frac{d}{dx}[sinx] + \frac{d}{dx}[cosx])[/tex]
  4. [Derivative] Trig Derivatives:                                                                         [tex]\displaystyle f'(x) = e^x(sinx + cosx) + e^x(cosx - sinx)[/tex]
  5. [Derivative] Factor:                                                                                         [tex]\displaystyle f'(x) = e^x[(sinx + cosx) + (cosx - sinx)][/tex]
  6. [Derivative] Combine like terms:                                                                   [tex]\displaystyle f'(x) = e^x[2cosx][/tex]
  7. [Derivative] Multiply:                                                                                       [tex]\displaystyle f'(x) = 2e^xcosx[/tex]

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

RELAXING NOICE
Relax