Respuesta :
Answer:
1) B. at 0 and 3 only
2) D. 2eˣcosx
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Terms/Coefficients
- Factoring
- Quadratics
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Trig Derivative: [tex]\displaystyle \frac{d}{dx}[sinu] = u'cosu[/tex]
Trig Derivative: [tex]\displaystyle \frac{d}{dx}[cosu] = -u'sinu[/tex]
eˣ Derivative: [tex]\displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'[/tex]
Step-by-step explanation:
*Note:
Velocity is the derivative of position.
Acceleration is the derivative of velocity.
Question 1
Step 1: Define
s(t) = t⁴ - 6t³ - 2t - 1
Step 2: Differentiate
- [Velocity] Basic Power Rule: s'(t) = 4 · t⁴⁻¹ - 3 · 6t³⁻¹ - 1 · 2t¹⁻¹
- [Velocity] Simplify: v(t) = 4t³ - 18t² - 2
- [Acceleration] Basic Power Rule: v'(t) = 3 · 4t³⁻¹ - 2 · 18t²⁻¹
- [Acceleration] Simplify: a(t) = 12t² - 36t
Step 3: Solve
- [Acceleration] Set up: 12t² - 36t = 0
- [Time] Factor: 12t(t - 3) = 0
- [Time] Identify: t = 0, 3
Question 2
Step 1: Define
f(x) = eˣ(sinx + cosx)
Step 2: Differentiate
- [Derivative] Product Rule: [tex]\displaystyle f'(x) = \frac{d}{dx}[e^x](sinx + cosx) + e^x\frac{d}{dx}[sinx + cosx][/tex]
- [Derivative] Rewrite [Derivative Property - Addition]: [tex]\displaystyle f'(x) = \frac{d}{dx}[e^x](sinx + cosx) + e^x(\frac{d}{dx}[sinx] + \frac{d}{dx}[cosx])[/tex]
- [Derivative] eˣ Derivative: [tex]\displaystyle f'(x) = e^x(sinx + cosx) + e^x(\frac{d}{dx}[sinx] + \frac{d}{dx}[cosx])[/tex]
- [Derivative] Trig Derivatives: [tex]\displaystyle f'(x) = e^x(sinx + cosx) + e^x(cosx - sinx)[/tex]
- [Derivative] Factor: [tex]\displaystyle f'(x) = e^x[(sinx + cosx) + (cosx - sinx)][/tex]
- [Derivative] Combine like terms: [tex]\displaystyle f'(x) = e^x[2cosx][/tex]
- [Derivative] Multiply: [tex]\displaystyle f'(x) = 2e^xcosx[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e
Otras preguntas
