Respuesta :

Answer:

[tex]r = 2[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (0,3)[/tex]

[tex](x_2,y_2) = (5,96)[/tex]

Required

Determine the common ratio

An exponential function is of the form.

[tex]y(x) = ar^x[/tex]

For:

[tex](x_1,y_1) = (0,3)[/tex]

We have:

[tex]3 = a * r^0[/tex]

[tex]3 = a * 1[/tex]

[tex]a= 3[/tex]

For

[tex](x_2,y_2) = (5,96)[/tex]

We have:

[tex]96 = ar^5[/tex]

Substitute 3 for a

[tex]96 = 3 * r^5[/tex]

Divide both sides by 3

[tex]\frac{96}{3} = \frac{3 * r^5}{3}[/tex]

[tex]32 = r^5[/tex]

Express 32 as an exponent of 2

[tex]2^5 = r^5[/tex]

By comparison

[tex]2 = r[/tex]

[tex]r = 2[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico