Respuesta :

Answer:

The wait  time is unusual because the probability value obtained is less than 2 standard deviation above the mean

Step-by-step explanation:

From the question we are told that

     The average wait time is  [tex]\mu = 55 \ min[/tex]

     The standard deviation is  [tex]\sigma = 33 \ min[/tex]

Generally the probability of  waiting over 1212 minutes is

     [tex]P(X > 1212) = P(\frac{X - \mu}{ \sigma } > \frac{ 1212 - 55}{ 33} )[/tex]

     [tex]P(X > 1212) = P(\frac{X - \mu}{ \sigma } > \frac{ 1212 - 55}{ 33} )[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

So

       [tex]P(X > 1212) = P(Z > 35 )[/tex]

From z table  the probability of  (Z  >  35 ) is  

        [tex]P(Z > 35 ) = 0[/tex]

Hence

    [tex]P(X > 1212) = 0[/tex]

The  time is unusual because the probability value obtained is less than 2 standard deviation above the mean

ACCESS MORE
EDU ACCESS
Universidad de Mexico