The proportion of eligible voters in the next election who will vote for the incumbent is assumed to be 53.6%. What is the probability that in a random sample of 470 voters, less than 48.1% say they will vote for the incumbent

Respuesta :

Answer:

The required probability = 0.0084

Step-by-step explanation:

GIven that:

Sample proportion = 53.6% = 0.536

Sample size = 470

Then; the mean [tex]\mu[/tex] = n × p

mean [tex]\mu[/tex] = 470 × 0.536

mean [tex]\mu[/tex] = 251.92

Standard deviation = [tex]\sqrt{n\times p(1-p)}[/tex]

Standard deviation = [tex]\sqrt{470 \times 0.536(1-0.536)}[/tex]

Standard deviation = [tex]\sqrt{470 \times 0.536(0.464)}[/tex]

Standard deviation = [tex]\sqrt{116.89088}[/tex]

Standard deviation = 10.81

The sample mean [tex]\overline x = n \times \dfrac{48.1}{100}[/tex]

The sample mean [tex]\overline x = 470 \times \dfrac{48.1}{100}[/tex]

The sample mean [tex]\overline x[/tex] = 226.07

Thus;

[tex]P( \overline x < 226.07) = P(Z < \dfrac{\overline x - \mu }{\sigma})[/tex]

[tex]P( \overline x < 226.07) = P(Z < \dfrac{226.07 - 251.92 }{10.81})[/tex]

[tex]P( \overline x < 226.07) = P(Z < -2.39)[/tex]

[tex]P( \overline x < 226.07)[/tex] = 0.0084

Therefore, the required probability = 0.0084

ACCESS MORE
EDU ACCESS