Answer:
The required probability = 0.0084
Step-by-step explanation:
GIven that:
Sample proportion = 53.6% = 0.536
Sample size = 470
Then; the mean [tex]\mu[/tex] = n × p
mean [tex]\mu[/tex] = 470 × 0.536
mean [tex]\mu[/tex] = 251.92
Standard deviation = [tex]\sqrt{n\times p(1-p)}[/tex]
Standard deviation = [tex]\sqrt{470 \times 0.536(1-0.536)}[/tex]
Standard deviation = [tex]\sqrt{470 \times 0.536(0.464)}[/tex]
Standard deviation = [tex]\sqrt{116.89088}[/tex]
Standard deviation = 10.81
The sample mean [tex]\overline x = n \times \dfrac{48.1}{100}[/tex]
The sample mean [tex]\overline x = 470 \times \dfrac{48.1}{100}[/tex]
The sample mean [tex]\overline x[/tex] = 226.07
Thus;
[tex]P( \overline x < 226.07) = P(Z < \dfrac{\overline x - \mu }{\sigma})[/tex]
[tex]P( \overline x < 226.07) = P(Z < \dfrac{226.07 - 251.92 }{10.81})[/tex]
[tex]P( \overline x < 226.07) = P(Z < -2.39)[/tex]
[tex]P( \overline x < 226.07)[/tex] = 0.0084
Therefore, the required probability = 0.0084