Answer:
The standard deviation of the sample mean [tex]\mathbf{\sigma _x =0.1049}[/tex]
Step-by-step explanation:
We are provided with just a question; so, we are going to do just that.
Given that:
The population Mean [tex]\mu[/tex] = 3.15
The population variance [tex]\sigma^2[/tex] = 0.55
The sample size n = 50
We can calculate the Standard deviation of the sample mean [tex]\sigma_x[/tex] by using the formula:
[tex]\sigma _x = \dfrac{\sigma}{\sqrt{n}}[/tex]
Recall that:
The population variance [tex]\sigma^2[/tex] = 0.55
So; [tex]\sigma= \sqrt{0.55}[/tex]
[tex]\sigma=0.7416[/tex]
Then: [tex]\sigma _x = \dfrac{0.7416}{\sqrt{50}}[/tex]
[tex]\mathbf{\sigma _x =0.1049}[/tex]