Respuesta :

Answer:

See below

Step-by-step explanation:

In order to derivate the cofunction identity, we will use the difference identity for sine.

[tex]\boxed{\sin(\alpha-\beta ) =\sin(\alpha )\cos(\beta ) - \cos(\alpha )\sin(\beta ) }[/tex]

[tex]\sin \left(\dfrac{\pi}{2} - x\right) =\sin \left(\dfrac{\pi}{2}\right)\cos(x) -\cos\left(\dfrac{\pi}{2}\right) \sin(x)[/tex]

Once

[tex]\sin \left(\dfrac{\pi}{2}\right) = 1[/tex]

[tex]\cos\left(\dfrac{\pi}{2}\right) = 0[/tex]

[tex]\sin \left(\dfrac{\pi}{2} - x\right) =1 \cdot \cos(x) -0\cdot \sin(x)[/tex]

[tex]\sin \left(\dfrac{\pi}{2} - x\right) = \cos(x)[/tex]

Answer:

sin, cos, 1, 0, cos

Step-by-step explanation:

answer on edge

RELAXING NOICE
Relax