Complete all parts of the problem.

(a)
[tex]\bigcup\limits_{i=1}^7R_i=R_1=\boxed{[1,2]}[/tex]
(b)
[tex]\bigcap\limits_{i=1}^7R_i=R_7=\boxed{\left[1,\dfrac87\right]}[/tex]
(c) No, because no two sets are disjoint. Why? Each of the [tex]R_i[/tex] contain the endpoint 1, so at the very least, [tex]\{1\}\subseteq R_i\cup R_j[/tex] for [tex]i\neq j[/tex].
(d)
[tex]\bigcup\limits_{i=1}^nR_i=R_1=\boxed{[1,2]}[/tex]
(e)
[tex]\bigcap\limits_{i=1}^nR_i=R_n=\boxed{\left[1,\dfrac{n+1}n\right]}[/tex]
(f)
[tex]\bigcup\limits_{i=1}^\infty R_i=R_1=\boxed{[1,2]}[/tex]
because as i gets larger, the set [tex]R_i[/tex] gets smaller. The infinite union will be equivalent to the largest set in the family of sets.
(g)
[tex]\bigcap\limits_{i=1}^\infty R_i=\boxed{\{1\}}[/tex]
because 1 + 1/n converges to 1 as n goes to infinity, so [tex]R_i[/tex] converges to the singleton set {1} as i goes to infinity.