Respuesta :

Answer:

Q' = (-3, 3)

R' = (-5, -3)

S' = (-2, -2)

T' = (0, 1)

Step-by-step explanation:

The coordinates of the vertices of the quadrilateral are;

T(-2, 1), Q(1, 3), S(0, -2), R(3, -3)

Therefore, taking the operation on the right first, we have;

T(2, 0)QRST, gives;

T(2, 0)QRST→ T(-2 + 2, 1), Q(1 + 2, 3), S(0 + 2, -2), R(3 + 2, -3)

T(2, 0)QRST→ T(0, 1), Q(3, 3), S(2, -2), R(5, -3)

For the next process R y-axis which is the reflection about the y-axis, the preimage (x, y) becomes the image (-x, y)

Therefore, we have;

R y-axis(T(0, 1), Q(3, 3), S(2, -2), R(5, -3)) = T'(0, 1), Q'(-3, 3), S'(-2, -2), R'(-5, -3)

From which we get (Ry-axis [tex]\circ[/tex] T(2, 0))(QRST =  T'(0, 1), Q'(-3, 3), S'(-2, -2), R'(-5, -3).

RELAXING NOICE
Relax