Respuesta :
Answer:
The probability is [tex]P(A \ge 50 ) = 0.14321[/tex]
Step-by-step explanation:
The average life span is [tex]\pi = 8[/tex]
The sample size is n = 200
Generally we are told that average lifespan for a certain type of vehicle follows an exponential distribution
i.e
[tex]X \~ \ \ \ exp(8)[/tex]
Gnerally the probability distribution function for exponential distribution is
[tex]f(x) = \left \{ {{\lambda * e^{-\lambda * x }\ \ \ x\ge 0 } \atop {0 \ \ \ \ \ \ \ \ \ \ x < 0}} \right.[/tex]
Now [tex]\lambda[/tex] is the constant which is evaluated as
[tex]\lambda = \frac{1}{\pi}[/tex]
=> [tex]\lambda = \frac{1}{8}[/tex]
=> [tex]\lambda = 0.125[/tex]
Generally the that the vehicles will fail in less than 2 years is mathematically represented as
[tex]P(X \le 2 )= p= \int\limits^2_0 {\lambda e^{- \lambda * x} } \, dx[/tex]
[tex]P(X \le 2 )= p= [ {0.125 * - \frac{1}{0.125 } e^{- 0.125 * x} } ]|\left 2 } \atop {0}} \right.[/tex]
[tex]P(X \le 2 )= p= [ {0.125 * - \frac{1}{0.125 } e^{- 0.125 * 2} } ] - [ {0.125 * - \frac{1}{0.125 } e^{- 0.125 * 0} } ][/tex]
[tex]P(X \le 2 )= p= -0.77880 + 1[/tex]
[tex]P(X \le 2 )= p= 0.2212[/tex]
Generally the probability that the vehicle will fail in the first 2 years follows a binomial distribution with the mean evaluated as
[tex]\mu = n * p[/tex]
=> [tex]\mu = 200 * 0.2212[/tex]
=> [tex]\mu = 44.24[/tex]
The standard deviation is
[tex]\sigma = \sqrt{np(1 - p)}[/tex]
[tex]\sigma = \sqrt{200 * 0.2212 (1 - 0.2212)}[/tex]
[tex]\sigma = 5.86[/tex]
Using normal approximation of binomial distribution the probability that 50 or more of them fail in the first 2 years is mathematically represented as
[tex]P(A \ge 50 ) = 1 - P(A < 50 )[/tex]
Applying continuity correction
[tex]P(A \ge 50.5 ) = 1 - P(A < 50.5 )[/tex]
Here
[tex]P(A < 50.5 ) = P(\frac{A - \mu }{\sigma} < \frac{50 - 44.24}{5.87} )[/tex]
Generally
[tex]\frac{A - \mu }{\sigma} = Z (The \ standardized \ value \ of A )[/tex]
=> [tex]P(A < 50.5 ) = P( Z < 1.0664 )[/tex]
From the z-table the probability value of ( Z < 1.0664 ) is
[tex]P( Z < 1.0664 ) = 0.85679[/tex]
So
[tex]P(A \ge 50 ) = 1 - 0.85679[/tex]
=> [tex]P(A \ge 50 ) = 0.14321[/tex]
Otras preguntas
