g The average lifespan for a certain type of vehicle is 8 years and follows an exponential distribution. A lot contains 200 of these vehicles, brand new. What is the probability that 50 or more of them fail in the first 2 years

Respuesta :

Answer:

The probability is [tex]P(A \ge 50 ) = 0.14321[/tex]

Step-by-step explanation:

The average life span is  [tex]\pi = 8[/tex]

The sample size is n =  200

Generally we are told that average lifespan for a certain type of vehicle follows an exponential distribution

i.e  

             [tex]X \~ \ \ \ exp(8)[/tex]

Gnerally the probability distribution function for exponential distribution is

       [tex]f(x) = \left \{ {{\lambda * e^{-\lambda * x }\ \ \ x\ge 0 } \atop {0 \ \ \ \ \ \ \ \ \ \ x < 0}} \right.[/tex]

Now [tex]\lambda[/tex] is the  constant which is evaluated as

      [tex]\lambda = \frac{1}{\pi}[/tex]

=>   [tex]\lambda = \frac{1}{8}[/tex]

=>   [tex]\lambda = 0.125[/tex]

Generally the that the vehicles will fail in less than 2 years is  mathematically represented as

         [tex]P(X \le 2 )= p= \int\limits^2_0 {\lambda e^{- \lambda * x} } \, dx[/tex]

        [tex]P(X \le 2 )= p= [ {0.125 * - \frac{1}{0.125 } e^{- 0.125 * x} } ]|\left 2 } \atop {0}} \right.[/tex]

       [tex]P(X \le 2 )= p= [ {0.125 * - \frac{1}{0.125 } e^{- 0.125 * 2} } ] - [ {0.125 * - \frac{1}{0.125 } e^{- 0.125 * 0} } ][/tex]

     [tex]P(X \le 2 )= p= -0.77880 + 1[/tex]

     [tex]P(X \le 2 )= p= 0.2212[/tex]

Generally the probability that the vehicle will fail in the first 2 years follows a binomial  distribution  with the mean evaluated as

         [tex]\mu = n * p[/tex]

=>      [tex]\mu = 200 * 0.2212[/tex]

=>      [tex]\mu = 44.24[/tex]

The standard deviation is

       [tex]\sigma = \sqrt{np(1 - p)}[/tex]    

      [tex]\sigma = \sqrt{200 * 0.2212 (1 - 0.2212)}[/tex]  

      [tex]\sigma = 5.86[/tex]

Using normal approximation of binomial  distribution the  probability that 50 or more of them fail in the first 2 years is mathematically represented as

   [tex]P(A \ge 50 ) = 1 - P(A < 50 )[/tex]

Applying continuity correction

    [tex]P(A \ge 50.5 ) = 1 - P(A < 50.5 )[/tex]

Here

    [tex]P(A < 50.5 ) = P(\frac{A - \mu }{\sigma} < \frac{50 - 44.24}{5.87} )[/tex]

Generally  

       [tex]\frac{A - \mu }{\sigma} = Z (The \ standardized \ value \ of A )[/tex]

=> [tex]P(A < 50.5 ) = P( Z < 1.0664 )[/tex]

From the z-table the probability value  of  ( Z  <  1.0664   ) is  

     [tex]P( Z < 1.0664 ) = 0.85679[/tex]

So  

   [tex]P(A \ge 50 ) = 1 - 0.85679[/tex]

=> [tex]P(A \ge 50 ) = 0.14321[/tex]

RELAXING NOICE
Relax