Past records indicate that 10% of online retail orders are fraudulent. Suppose 20 online orders are placed. What is the probability that none are fraudulent

Respuesta :

Answer:

[tex]Probability = 0.1216[/tex]

Step-by-step explanation:

Given

[tex]n = 20[/tex]

Represent fraudulent with p

[tex]p = 10\%[/tex]

[tex]p = 0.10[/tex]

Required

Determine the probability that none are fraudulent

First, we need to determine the proportion of those that are not fraudulent.

Represent this with q

[tex]p + q= 1[/tex]

[tex]10\% + q = 1[/tex]

[tex]q = 1 - 10\%[/tex]

[tex]q = 90\%[/tex]

[tex]q = 0.9[/tex]

The required probability is binomial and can be determine using the following:

[tex](p + q)^n = ^nC_xp^xq^{n - x}; x = 0,1,2...n[/tex]

In this case x = 0 (none);

So, the required probability is:

[tex]Probability = ^nC_0p^0q^{n - 0}[/tex]

Substitute values for n, p and q

[tex]Probability = ^{20}C_0 * 0.1^0 * 0.9^{20 - 0}[/tex]

[tex]Probability = ^{20}C_0 * 0.1^0 * 0.9^{20}[/tex]

[tex]Probability = ^{20}C_0 * 1* 0.9^{20}[/tex]

[tex]Probability = \frac{20!}{(20 - 0)!20!} * 1* 0.9^{20}[/tex]

[tex]Probability = 1 * 1* 0.9^{20}[/tex]

[tex]Probability = 0.9^{20}[/tex]

[tex]Probability = 0.12157665459[/tex]

[tex]Probability = 0.1216[/tex] Approximated

ACCESS MORE
EDU ACCESS
Universidad de Mexico