Answer:
[tex]Probability = 0.1216[/tex]
Step-by-step explanation:
Given
[tex]n = 20[/tex]
Represent fraudulent with p
[tex]p = 10\%[/tex]
[tex]p = 0.10[/tex]
Required
Determine the probability that none are fraudulent
First, we need to determine the proportion of those that are not fraudulent.
Represent this with q
[tex]p + q= 1[/tex]
[tex]10\% + q = 1[/tex]
[tex]q = 1 - 10\%[/tex]
[tex]q = 90\%[/tex]
[tex]q = 0.9[/tex]
The required probability is binomial and can be determine using the following:
[tex](p + q)^n = ^nC_xp^xq^{n - x}; x = 0,1,2...n[/tex]
In this case x = 0 (none);
So, the required probability is:
[tex]Probability = ^nC_0p^0q^{n - 0}[/tex]
Substitute values for n, p and q
[tex]Probability = ^{20}C_0 * 0.1^0 * 0.9^{20 - 0}[/tex]
[tex]Probability = ^{20}C_0 * 0.1^0 * 0.9^{20}[/tex]
[tex]Probability = ^{20}C_0 * 1* 0.9^{20}[/tex]
[tex]Probability = \frac{20!}{(20 - 0)!20!} * 1* 0.9^{20}[/tex]
[tex]Probability = 1 * 1* 0.9^{20}[/tex]
[tex]Probability = 0.9^{20}[/tex]
[tex]Probability = 0.12157665459[/tex]
[tex]Probability = 0.1216[/tex] Approximated