Answer:
3
Step-by-step explanation:
We are given that
[tex]f(x)=0.1x^4-0.5x^3-3.3x^2+7.7x-1.99[/tex]
We have to find the positive value of b.
[tex]\lim_{x\rightarrow b}f(x)=2[/tex]
[tex]\lim_{x\rightarrow b}(0.1x^4-0.5x^3-3.3x^2+7.7x-1.99)=2[/tex]
[tex]0.1b^4-0.5b^3-3.3b^2+7.7b-1.99=2[/tex]
[tex]0.1b^4-0.5b^3-3.3b^2+7.7b-1.99-2=0[/tex]
[tex]0.1b^4-0.5b^3-3.3b^2+7.7b-3.99=0[/tex]
[tex]10b^4-50b^3-330b^2+770b-399=0[/tex]
Let
[tex]g(b)=10b^4-50b^3-330b^2+770b-399[/tex]
Using Discartes' rule of sign
There are number of sign changes are 3.
Therefore, the positive real roots are 3 or 1.
[tex]g(-b)=10b^4+50b^3-330b^2-770b-399[/tex]
There are number of sign changes are 1 .
Therefore, negative real roots are 1.
When negative root is 1 .Then , positive real roots are 3 because total number of roots are 4.
Hence, positive values of b=3