Answer:
The answer is "[tex]\bold{c= \pm \frac{2}{\sqrt{3}}}[/tex]"
Step-by-step explanation:
If the function is:
[tex]\to f'(x) = 3x^2-2 \\\\\to f'(c) = 3c^2-2[/tex]
points are:
[tex]\to -2 \leq x \leq2[/tex]
use the mean value theorem:
[tex]\to f'(c) = \frac{ f(b)- f(a)}{b-a}[/tex]
[tex]= \frac{ f(2)- f(-2)}{2-(-2)}\\\\= \frac{4-(-4) }{4}\\\\= \frac{8}{4}\\\\= 2[/tex]
[tex]\to 3c^2-2=2 \\\\\to 3c^2=4 \\\\\to c^2=\frac{4}{3} \\\\c= \pm \frac{2}{\sqrt{3}}[/tex]