An airplane accelerates at 7.5 m/s2 at an angle of 16° above the horizontal. Find the horizontal and vertical components of the acceleration.
horizontal component: ______ m/s2
vertical component: ______ m/s2

Respuesta :

Answer:

[tex]the \: horizontal \: component \: of \: the \: acceleration : \\ a_{x} = 7.21\: {m(s)}^{ - 2} \\ the \: vertical \: component \: of \: the \: acceleration : \\ a_{y} = 2.07 \: {m(s)}^{ - 2} [/tex]

Explanation:

[tex]the \: horizontal \: component \: of \: the \: acceleration : \\ a_{x} = a \: \cos( \alpha ) \\ a_{x} = 7.5 \: \cos(16) \\ a_{x} = 7.2094627195 \: {m(s)}^{ - 2} \\ \\ the \: vertical \: component \: of \: the \: acceleration : \\ a_{y} = a \: \sin( \alpha )\\a_{y} = 7.5 \: \sin(16) \\ a_{y} = 2.0672801686 \: {m(s)}^{ - 2} \\ [/tex]

Answer:

horizontal component: [tex]7.2\ m/s^2[/tex]

vertical component: [tex]2.1\ m/s^2[/tex]

Explanation:

Rectangular components of a vector

Given a vector as a (magnitude, angle) pair, the rectangular components can be calculated as:

[tex]a_x= magnitude*cos(angle)[/tex]

[tex]a_y=magnitude*sin(angle)[/tex]

The acceleration of the airplane is given with a magnitude of 7.5 m/s^2 and an angle of 16°.

Calculate the components:

[tex]a_x=7.5*cos(16^\circ)=7.2\ m/s^2[/tex]

[tex]a_y=7.5*sin(16^\circ)=2.1\ m/s^2[/tex]

horizontal component: [tex]7.2\ m/s^2[/tex]

vertical component: [tex]2.1\ m/s^2[/tex]

RELAXING NOICE
Relax