The sequence for the derivation of tangent sum identity is option I --> IV --> II --> III.
What is trigonometric identity?
The trigonometric identities is the relationship between the different trigonometric ratios. These trigonometric identities are the basic formulae that are true for all the values of the reference angle.
For the given situation,
The derivation for the tangent sum identity is given in the table below.
The derivation follows the steps,
[tex]\frac{sin(x+y)}{cos(x+y)}[/tex]
we know that, [tex]sin(x+y) = sinx cosy + cosx siny[/tex] ,
[tex]cos(x+y)=cosxcoxy - sinxsiny[/tex] and
[tex]\frac{sinx}{cosx}=tanx[/tex]
⇒ [tex]\frac{sinxcosy + cosxsiny}{cosxcosy-sinxsiny}[/tex]
Divide each term by [tex]cosxcosy[/tex]
⇒ [tex]\frac{\frac{sinxcosy}{cosxcosy} +\frac{cosxsiny }{cosxcosy} }{\frac{cosxcosy}{cosxcosy} -\frac{sinxsiny}{cosxcosy} }[/tex]
⇒ [tex]\frac{tanx+tany}{1-tanxtany}[/tex]
Hence we can conclude that the derivation of tangent sum identity is option I --> IV --> II --> III.
Learn more about trigonometric identity here
https://brainly.com/question/15858604
#SPJ2