Respuesta :
Answer:
[tex]E=3.97\times 10^{-27}\ \text{ergs}[/tex]
Step-by-step explanation:
It is given that,
The sun produces [tex]3.9\times 10^{33}\ \text{ergs}[/tex] of radiant energy per second.
We need to find how many ergs of radiant energy does the sun produce in [tex]1.55\times 10^7\ s[/tex].
Energy produced in 1 seconds = [tex]\dfrac{1}{3.9\times 10^{33}}\ \text{ergs}[/tex]
In [tex]1.55\times 10^7\ s[/tex], energy produced is :
[tex]E=\dfrac{1}{3.9\times 10^{33}}\times 1.55\times 10^7\ \text{ergs}\\\\=3.97\times 10^{-27}\ \text{ergs}[/tex]
Hence, the radiant energy produced in 1 second is [tex]3.97\times 10^{-27}\ \text{ergs}[/tex].
Answer:
Part A: It is given that,
The sun produces 3.9x10^33 ergs of radiant energy per second.
We need to find how many ergs of radiant energy does the sun produce in 1.55 x 10^7 s
Energy produced in 1 seconds = 1/3.9 x 10^33 ergs
In 1.55 x 10^7 s energy produced is : E=3.9/10^33 x 1.55 x 10^7 ergs
= 3.97 x 10^-27 ergs
In conclusion the radiant energy radiated per second 3.97 x 10^27 ergs
Step-by-step explanation: