Respuesta :

Answer:

The angle across the given measurements are the same. So there will be a 27 degrees across from the other 27 degrees. The straight line is 180 degrees, so do 180-27=153. The means the other 2 angles are 153 degrees. The other one is the same, but with different measurements. 180-35=145

Step-by-step explanation:

Let the angle adjacent to ∠27° be x .

[tex]∠x + 27 = 180° \: ( \: linear \: pair \: )[/tex]

[tex]x = 180 - 27 \\ ∠x = 153°[/tex]

Let the angle opposite to ∠27° be y .

[tex]∠y = ∠27° \: ( \: vertically \: opposite \: angles \: )[/tex]

Let the angle adjacent to ∠y ( 27°) be w .

[tex]w + ∠27° = 180° \: ( \: linear \: pair \: ) \\ w = 180 - 27 \\ ∠w = 153°[/tex]

Let the angle opposite to ∠35° be p .

[tex]∠p = ∠35° \: ( \: vertically \: opposite \: angles \: )[/tex]

Let the angle adjacent to ∠35° be a .

[tex]∠a + 35° =180 ° \: ( linear \: pair ) \\ a = 180 - 35 \\ ∠a = 145°[/tex]

Let the angle opposite to ∠35° be t .

[tex]∠t = 35° \: ( \: vertically \: opposite \: angles \: )[/tex]

Let the angle opposite to ∠145° be o .

[tex]∠o \: = 145° \: ( \: vertically \: opposite \: angles \: )[/tex]

Ver imagen LadyStrange
ACCESS MORE