Respuesta :
Answer:
The answer is "[tex]\bold{T = - 7.5 \cos \frac{\pi}{12}( t - 4 )+ 10.5}[/tex]"
Step-by-step explanation:
Given value:
Temp-maximum=[tex]18^{\circ}[/tex]
Temp. minimum = [tex]3^{\circ}[/tex]
It is halfway between 10 am and 10 pm to 4 am.
The sinus and cosine roles could be used throughout the year to predict fluctuations in climate models. Its type of formula that can be used to model such information is:
[tex]T = A \cos B(t-C) + D,[/tex] where parameters are A, B , C, D, T is the ° C temperature and t is the time (1-24)
[tex]A = amplitude = \frac{(T_{max} - T_{min})}{2}\\\\[/tex]
[tex]= \frac{(3 - 18)}{2}\\\\= - \frac{15}{2}\\\\ = -7.5[/tex]
[tex]B = \frac{2 \pi}{24}\\\\[/tex]
[tex]= \frac{\pi}{12}[/tex]
[tex]C = \text{ units translated to the right}= 4[/tex]
[tex]D = y_{min} + amplitude = units \ translated \ up\\\\[/tex]
D = 7.5 + 3 = 10.5
Its trigonometric function equation that model temperature T hours after midnight in Johannesburg t.
[tex]T = - 7.5 \cos \frac{\pi}{12}( t - 4 )+ 10.5[/tex]