Respuesta :
Answer:
Chair x₁ = 10
Sofa x₂ = 18
z(max) = 2250 $
Step-by-step explanation:
Information:
Operation-Profit Carpentry Finishing Upholstery Profit
hours hours hours $
Chair (x₁) 3 9 2 90
Sofa (x₂) 2 4 10 75
Objective Function z:
z = 90*x₁ + 75*x₂
Constrains:
1.-66 hours of carpentry available
3*x₁ + 2*x₂ ≤ 66
2.- 180 hours of finishing available
9*x₁ + 4*x₂ ≤ 180
3.- 200 hours of upholstery
2*x₁ + 10*x₂ ≤ 200
Model:
z = 90*x₁ + 75*x₂ to maximize
Subject to:
3*x₁ + 2*x₂ ≤ 66
9*x₁ + 4*x₂ ≤ 180
2*x₁ + 10*x₂ ≤ 200
x₁ >= 0 x₂ >= 0
From simplex method solver we get the answer
x₁ = 10 x₂ = 18 z = 2250
The linear programming model is:
- Maximize [tex]\mathbf{Z = 90x + 75y}[/tex]
- Subject to [tex]\mathbf{3x + 2y \le 66}[/tex], [tex]\mathbf{9x + 4y \le 180}[/tex], [tex]\mathbf{2x + 10y \le 200}[/tex], [tex]\mathbf{x,y \ge 0}[/tex]
Represent sofa with y and chairs with x.
The given parameters are:
Carpentry:
[tex]\mathbf{Chair =3\ hours}[/tex]
[tex]\mathbf{Sofa =2\ hours}[/tex]
[tex]\mathbf{Available = 66\ hours}[/tex]
So, we have:
[tex]\mathbf{3x + 2y \le 66}[/tex]
Finishing
[tex]\mathbf{Chair =9\ hours}[/tex]
[tex]\mathbf{Sofa =4\ hours}[/tex]
[tex]\mathbf{Available = 180\ hours}[/tex]
So, we have:
[tex]\mathbf{9x + 4y \le 180}[/tex]
Upholstery
[tex]\mathbf{Chair =2\ hours}[/tex]
[tex]\mathbf{Sofa =10\ hours}[/tex]
[tex]\mathbf{Available = 200\ hours}[/tex]
So, we have:
[tex]\mathbf{2x + 10y \le 200}[/tex]
The profit is given as: $90 per chair, and $75 per sofa.
So, the objective function is:
[tex]\mathbf{Z = 90x + 75y}[/tex]
Hence, the linear programming model is:
Maximize [tex]\mathbf{Z = 90x + 75y}[/tex]
Subject to
[tex]\mathbf{3x + 2y \le 66}[/tex]
[tex]\mathbf{9x + 4y \le 180}[/tex]
[tex]\mathbf{2x + 10y \le 200}[/tex]
[tex]\mathbf{x,y \ge 0}[/tex]
Read more about linear programming model at:
https://brainly.com/question/13720072