What is the factored form of this expression?
-9x^3 - 12x^2 - 4x

A. x(3x - 2)(3x + 2)

B. -x(3x + 2)^2

C. x(3x - 2)^2

D. -x(3x - 2)(3x + 2)

Respuesta :

Answer:

B

Step-by-step explanation:

Given

- 9x³ - 12x² - 4x ← factor out - x from each term

= - x(9x² + 12x + 4) ← perfect square

= - x(3x + 2)(3x + 2)

= - x(3x + 2)² → B

-9x^3-12x^2-4x

Factor out -x from the expression

-x×(9x^2+12x+4)

Using a^2+2ab+b^2=(a+b)^2 Factor the expression

-x×(3x+2)^2

now we do the same thing only different way ok

9x^2+12x+4

write the number in the exponential form with an exponent of 2

3^2 x^2+12x+4

write the expression as a product with the Factors 3x and 2

3^2 x^2 +2×3x×2+4

write the number in the exponential form with an exponent of 2

3^2 x^2+2×3x×2+2^2

Multiply the terms with equal exponents by multiplying their bases

(3x)^2+2×3x×2+2^2

Using a^2+2ab+b^2=(a+b)^2 Factor the expression

(3x+2)^2

Solution: -x×(3x+2)^2

answer:B

PLEASE MARK ME AS BRAINLIEST

RELAXING NOICE
Relax