Respuesta :
Given:
Total of raffle tickets = 30
Number of tickets Jason bought = 10
Number of prizes = 3
To find:
The probability that Jason will win all 3 of the prizes if once a raffle ticket wins a prize it is thrown away.
Solution:
Total of raffle tickets = 30
Number of prizes = 3
So, number of total outcomes is
[tex]n(S)=^{30}C_3[/tex]
Number of tickets Jason bought = 10
So, number of favorable outcomes is
[tex]n(A)=^{10}C_3[/tex]
Now,
[tex]\text{Probability}=\dfrac{\text{Favorable outcomes}}{\text{Total outcomes}}[/tex]
[tex]\text{Probability}=\dfrac{n(A)}{n(S)}[/tex]
[tex]\text{Probability}=\dfrac{^{10}C_3}{^{30}C_3}[/tex]
[tex]\text{Probability}=\dfrac{\dfrac{10!}{(10-3)!3!}}{\dfrac{30!}{(30-3)!3!}}[/tex]
[tex]\text{Probability}=\dfrac{10\times 9\times 8\times 7!}{7!3!}\times\dfrac{27!3!}{30\times 29\times 28\times 27!}[/tex]
[tex]\text{Probability}=\dfrac{10\times 9\times 8}{30\times 29\times 28}[/tex]
[tex]\text{Probability}=\dfrac{6}{203}[/tex]
Therefore, the correct option is A.