Given:
Three equations are
[tex]6(0.5x-1.5)+2x=-9-(x+6)[/tex]
[tex]4(0.5x-2)+3x=-14-(x+6)[/tex]
[tex]8(0.5x-3)+4x=-9-(x+6)[/tex]
Three solutions are [tex]x=-2,x=-1,x=1[/tex].
To find:
The solution of each equation from the given solutions.
Solution:
We have,
[tex]6(0.5x-1.5)+2x=-9-(x+6)[/tex]
Using distributive property, we get
[tex]3x-9+2x=-9-x-6[/tex]
[tex]5x-9=-15-x[/tex]
Isolate variable terms.
[tex]5x+x=-15+9[/tex]
[tex]6x=-6[/tex]
Divide both sides by 6.
[tex]x=-1[/tex]
Similarly,
[tex]4(0.5x-2)+3x=-14-(x+6)[/tex]
[tex]2x-8+3x=-14-x-6[/tex]
[tex]5x-8=-20-x[/tex]
[tex]5x+x=-20+8[/tex]
[tex]6x=-12[/tex]
[tex]x=-2[/tex]
Now,
[tex]8(0.5x-3)+4x=-9-(x+6)[/tex]
[tex]4x-24+4x=-9-x-6[/tex]
[tex]8x-24=-15-x[/tex]
[tex]8x+x=-15+24[/tex]
[tex]9x=9[/tex]
[tex]x=1[/tex]
Therefore, the solutions of given equations [tex]6(0.5x-1.5)+2x=-9-(x+6)[/tex], [tex]4(0.5x-2)+3x=-14-(x+6)[/tex] and [tex]8(0.5x-3)+4x=-9-(x+6)[/tex] are x=-1, x=-2 and x=1 respectively.