esteban79
contestada

NEED HELP DUE AT 11:59!! A ball is thrown horizontally from the top of
a building 130 m high. The ball strikes the
ground 53 m horizontally from the point of
release.
What is the speed of the ball just before it
strikes the ground?
Answer in units of m/s.

Respuesta :

Answer:

Since the ball was thrown horizontally, there was no vertical component in that force. and hence, the initial vertical velocity of the ball is 0 m/s and the initial horizontal velocity is r.

We are given:

initial velocity  (u) = 0 m/s     [vertical]

final velocity (v) = v m/s  [vertical]

time taken to reach the ground (t) = t seconds

acceleration (a) = 10 m/s/s   [vertical , due to gravity]

height from the ground (h) = 130 m

displacement (s) = 53 m [horizontal]

Solving for time taken:

From the third equation of motion:

s = ut + 1/2 at²

130 = (0)(t) + 1/2 * (10) * t²

130 = 5t²

t² = 26

t = √26 seconds  or   5.1 seconds

Final Horizontal velocity of the ball

Since the horizontal velocity of the ball will remain constant:

the ball covered 53 m in 5.1 seconds [horizontally]

horizontal velocity of the ball = horizontal distance covered / time taken

Velocity of the ball = 53 / 5.1

Velocity of the ball = 10.4 m/s

Answer:

51.51519 m/s

Explanation:

Given: [tex]a_{x} =0[/tex] [tex]a_{y} -g[/tex] [tex]v_{yo} =0[/tex] [tex]x_{o} =0[/tex] [tex]x=53[/tex][tex]y_{o} =130[/tex]

X-direction                           | Y-direction

[tex]x=x_{o} +v_{xo}t[/tex]                         | [tex]y=y_{o} +v_{yo}t+\frac{1}{2}a_{y}t^2[/tex]

[tex]53=0v_{xo}(5.15078)[/tex]                 | [tex]0=130+\frac{1}{2}(-9.8)t^2[/tex]

[tex]53=v_{xo} (5.15078)[/tex]                    | [tex]-130=-4.9t^2[/tex]

[tex]\frac{53}{5.15078} =v_{xo}[/tex]                             |  [tex]\sqrt{\frac{-130}{-4.9} }=\sqrt{t^2}[/tex]

[tex]10.2897=v_{xo}[/tex]                            | [tex]5.15078=t[/tex]

[tex]v=\sqrt{v_{y}^2+ v_{x}^2}[/tex]                            | [tex]v_{y}^2 =v_{yo}+2a_{y} d[/tex]

[tex]v=\sqrt{(50.27771)^2+(10.2897)^2}[/tex] | [tex]\sqrt{v_{y}^2} =\sqrt{2(-9.8)(0-130)}[/tex]

[tex]v=51.51519 m/s[/tex]                        | [tex]v_{y}=50.47771[/tex]

ACCESS MORE