Respuesta :
Answer:
Since the ball was thrown horizontally, there was no vertical component in that force. and hence, the initial vertical velocity of the ball is 0 m/s and the initial horizontal velocity is r.
We are given:
initial velocity (u) = 0 m/s [vertical]
final velocity (v) = v m/s [vertical]
time taken to reach the ground (t) = t seconds
acceleration (a) = 10 m/s/s [vertical , due to gravity]
height from the ground (h) = 130 m
displacement (s) = 53 m [horizontal]
Solving for time taken:
From the third equation of motion:
s = ut + 1/2 at²
130 = (0)(t) + 1/2 * (10) * t²
130 = 5t²
t² = 26
t = √26 seconds or 5.1 seconds
Final Horizontal velocity of the ball
Since the horizontal velocity of the ball will remain constant:
the ball covered 53 m in 5.1 seconds [horizontally]
horizontal velocity of the ball = horizontal distance covered / time taken
Velocity of the ball = 53 / 5.1
Velocity of the ball = 10.4 m/s
Answer:
51.51519 m/s
Explanation:
Given: [tex]a_{x} =0[/tex] [tex]a_{y} -g[/tex] [tex]v_{yo} =0[/tex] [tex]x_{o} =0[/tex] [tex]x=53[/tex][tex]y_{o} =130[/tex]
X-direction | Y-direction
[tex]x=x_{o} +v_{xo}t[/tex] | [tex]y=y_{o} +v_{yo}t+\frac{1}{2}a_{y}t^2[/tex]
[tex]53=0v_{xo}(5.15078)[/tex] | [tex]0=130+\frac{1}{2}(-9.8)t^2[/tex]
[tex]53=v_{xo} (5.15078)[/tex] | [tex]-130=-4.9t^2[/tex]
[tex]\frac{53}{5.15078} =v_{xo}[/tex] | [tex]\sqrt{\frac{-130}{-4.9} }=\sqrt{t^2}[/tex]
[tex]10.2897=v_{xo}[/tex] | [tex]5.15078=t[/tex]
[tex]v=\sqrt{v_{y}^2+ v_{x}^2}[/tex] | [tex]v_{y}^2 =v_{yo}+2a_{y} d[/tex]
[tex]v=\sqrt{(50.27771)^2+(10.2897)^2}[/tex] | [tex]\sqrt{v_{y}^2} =\sqrt{2(-9.8)(0-130)}[/tex]
[tex]v=51.51519 m/s[/tex] | [tex]v_{y}=50.47771[/tex]