Respuesta :

Answer:

[tex] e = 13\sqrt{2} [/tex]

[tex] f = 13\sqrt{2} [/tex]

Step-by-step explanation:

The ∆ given is an isosceles ∆ with a right angle measuring 90°, and two congruent angles measuring 45° each.

Using trigonometric ratio formula, we can find the lengths of the missing side as shown below:

Finding e:

[tex] sin(\theta) = \frac{opp}{hyp} [/tex]

[tex] sin(\theta) = sin(45) = \frac{\sqrt{2}}{2} [/tex]

hyp = 26

opp = e = ?

Plug in the values into the formula

[tex] \frac{\sqrt{2}}{2} = \frac{e}{26} [/tex]

Multiply both sides by 26

[tex] \frac{\sqrt{2}}{2}*26 = \frac{e}{26}*26 [/tex]

[tex] \frac{\sqrt{2}}{2}*26 = e [/tex]

[tex] \frac{\sqrt{2}}{1}*13 = e [/tex]

[tex] 13\sqrt{2} = e [/tex]

[tex] e = 13\sqrt{2} [/tex]

Since side e is of the same length with side f, therefore, the length of side f = [tex] 13\sqrt{2} [/tex]

ACCESS MORE

Otras preguntas