Answer:
[tex]\boxed {m = \frac{5}{4}}[/tex]
Step-by-step explanation:
Solve for the value of [tex]m[/tex]:
[tex]-\frac{1}{2} = m - \frac{7}{4}[/tex]
-Switch sides:
[tex]m - \frac{7}{4} = -\frac{1}{2}[/tex]
-Add both sides by [tex]\frac{7}{4}[/tex] and the least common multiple of both [tex]2[/tex] and [tex]4[/tex] is [tex]4[/tex]. So, convert [tex]-\frac{1}{2}[/tex] to a fraction with denominator [tex]4[/tex]:
[tex]m - \frac{7}{4} + \frac{7}{4} = -\frac{1}{2} + \frac{7}{4}[/tex]
[tex]m = -\frac{2}{4} + \frac{7}{4}[/tex]
-Since both [tex]-\frac{2}{4}[/tex] and [tex]\frac{7}{4}[/tex] have the same denominator, then you would add the numerators:
[tex]m = \frac{-2 + 7}{4}[/tex]
[tex]\boxed {m = \frac{5}{4}}[/tex]
Therefore, the value of [tex]m[/tex] is [tex]\frac{5}{4}[/tex].