The value of the given exponent is [tex]\frac{5}{2}[/tex]
Given:
The exponent = [tex](\frac{4}{25})^{\frac{-1}{2}}[/tex]
To find:
The value of a given exponent
Solution:
[tex](\frac{4}{25})^{\frac{-1}{2}} = ?[/tex]
Using the identity of an exponent : [tex](\frac{m}{n})^{x} = \frac{m^{x}}{n^{x}}[/tex]
[tex](\frac{4}{25})^{\frac{-1}{2}} = \frac{(4)^{(\frac{-1}{2})}}{(25)^{(\frac{-1}{2})}}\\[/tex]
Using the identity of an exponent : [tex]a^{-x} = \frac{1}{a^x}[/tex]
[tex]=\frac{(25)^{(\frac{1}{2})}}{(4)^{(\frac{1}{2})}}\\=\frac{(25)^{(\frac{1}{2})}}{(4)^{(\frac{1}{2})}}\\=\frac{((5)^2)^{(\frac{1}{2})}}{((2)^2)^{(\frac{1}{2})}}\\[/tex]
Using the identity of an exponent: [tex](a^{n})^m=a^{m\times n}[/tex]
[tex]=\frac{5^{(2\times \frac{1}{2})}}{2^{(2\times \frac{1}{2})}}\\=\frac{5^1}{2^1}\\=\frac{5}{2}[/tex]
The value of the given exponent is [tex]\frac{5}{2}[/tex].
Learn more about exponents here :
brainly.com/question/15993626?referrer=searchResults
brainly.com/question/219134?referrer=searchResults