Respuesta :

The value of the given exponent is [tex]\frac{5}{2}[/tex]

Given:

The exponent = [tex](\frac{4}{25})^{\frac{-1}{2}}[/tex]

To find:

The value of a given exponent

Solution:

[tex](\frac{4}{25})^{\frac{-1}{2}} = ?[/tex]

Using the identity of an exponent : [tex](\frac{m}{n})^{x} = \frac{m^{x}}{n^{x}}[/tex]

[tex](\frac{4}{25})^{\frac{-1}{2}} = \frac{(4)^{(\frac{-1}{2})}}{(25)^{(\frac{-1}{2})}}\\[/tex]

Using the identity of an exponent : [tex]a^{-x} = \frac{1}{a^x}[/tex]

[tex]=\frac{(25)^{(\frac{1}{2})}}{(4)^{(\frac{1}{2})}}\\=\frac{(25)^{(\frac{1}{2})}}{(4)^{(\frac{1}{2})}}\\=\frac{((5)^2)^{(\frac{1}{2})}}{((2)^2)^{(\frac{1}{2})}}\\[/tex]

Using the identity of an exponent: [tex](a^{n})^m=a^{m\times n}[/tex]

[tex]=\frac{5^{(2\times \frac{1}{2})}}{2^{(2\times \frac{1}{2})}}\\=\frac{5^1}{2^1}\\=\frac{5}{2}[/tex]

The value of the given exponent is [tex]\frac{5}{2}[/tex].

Learn more about exponents here :

brainly.com/question/15993626?referrer=searchResults

brainly.com/question/219134?referrer=searchResults

ACCESS MORE