Respuesta :
Answer:
b=20
Step-by-step explanation:
[tex]b ^{2} + {a}^{2} = {c}^{2} \ \\ {b}^{2} = {c}^{2} - {a}^{2} \\ {b}^{2} = {25}^{2} - {15}^{2} = 625 - 225 = 400 \\ b = \sqrt{400} = 20[/tex]
Given : In a triangle ABC , a = 15 , c = 25 . Also the triangle is a right angled triangle .
To Find : The value of b using the Pythagoras Theorem.
Solution : The value of side a is 15 , c is 25 and we have to find b . The sides with be Pythagorean Triplet whose smallest member will be 15 . So the third member. will be 20 . And the largest member is 25 .
The Pythagoras Theorem is :
[tex]\boxed{\red{\bf hypontenuse^2=base^2+perpendicular^2}}[/tex]
⇒ c² = a² + b² .
⇒ b² = c² - a² .
⇒ b² = ( c + a ) ( c - a ) .
⇒ b² = ( 25 + 15 ) ( 25 - 15 ) .
⇒ b² = 40 × 10.
⇒ b² = 400.
⇒ b² = √400.
⇒ b = 20 .
Hence the value of c is 20 .