Determine what must be multiplied so that the expression below will have a common denominator. Use the backslash / to type in a fraction.
![Determine what must be multiplied so that the expression below will have a common denominator Use the backslash to type in a fraction class=](https://us-static.z-dn.net/files/dcc/338cae1f3f2e6c73c5fe0ae9eda5c72e.png)
Answer:
Multiply the first fraction by [tex]\frac{x+4}{x+4}[/tex]
Multiply the second fraction by [tex]\frac{x-4}{x-4}[/tex]
Step-by-step explanation:
Given
[tex]\frac{4}{x^2 - 16} + \frac{3}{x^2 + 8x + 16}[/tex]
Required
Make the denominator equal
[tex]\frac{4}{x^2 - 16} + \frac{3}{x^2 + 8x + 16}[/tex]
Factorize the denominator
[tex]\frac{4}{x^2 - 4^2} + \frac{3}{x^2 + 4x + 4x+ 16}[/tex]
[tex]\frac{4}{(x - 4)(x + 4)} + \frac{3}{(x+ 4)(x + 4)}[/tex]
Multiply the first fraction by [tex]\frac{x+4}{x+4}[/tex]
Multiply the second fraction by [tex]\frac{x-4}{x-4}[/tex]
[tex]\frac{x+4}{x+4} * \frac{4}{(x - 4)(x + 4)} + \frac{3}{(x+ 4)(x + 4)} * \frac{x-4}{x-4}[/tex]
[tex]\frac{4(x + 4)}{(x - 4)(x + 4)(x + 4)} + \frac{3(x - 4)}{(x+ 4)(x + 4)(x - 4))}[/tex]
[tex]\frac{4(x + 4)}{(x^2 - 16)(x + 4)} + \frac{3(x - 4)}{(x^2 - 16)(x + 4))}[/tex]
The expression now have the same denominator