Respuesta :
Answer:
[tex]y=\frac{7}{2} x-\frac{1}{2}[/tex]
OR
2y=7x-1
Step-by-step explanation:
(-1,-4) (1,3)
step1: find the gradient m.
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
FOR (-1,-4) -1=x1 and -4=y1
FOR (1,3) 1=x2 and 3=y2
SO,
[tex]m=\frac{3-(-4)}{1-(-1)} =\frac{7}{2}[/tex]
step2: identify a and b for any point.
I will use (1,3) 1=a and 3=b
step3: sub the values in the equation y-b=m(x-a) to get the equation of the line.
y-b=m(x-a)
y-3=[tex]\frac{7}{2}[/tex](x-1)
(times [tex]\frac{7}{2}[/tex] by the bracket)
y-3=[tex]\frac{7}{2}x-\frac{7}{2}[/tex]
(add 3 for both sides)
[tex]y=\frac{7}{2} x-\frac{1}{2}[/tex]
the answer is:
[tex]y=\frac{7}{2} x-\frac{1}{2}[/tex]
OR
(you can multiply 2 for both sides to get rid of the fraction)
2y=7x-1