contestada

10.The volume V of a given mass of gas varies inversely as the pressure P. When V =2m3 ,P=500 N/m2 .Find the volume when the pressure is 400N/m2 Find the pressure when the volume is 5 m3

Respuesta :

Answer:

[tex]2.5\; \rm m^3[/tex].

Step-by-step explanation:

Let [tex]V_1[/tex] and [tex]P_1[/tex] denote the volume and pressure of this gas before the change. Let [tex]V_2[/tex] and [tex]P_2[/tex]denote the pressure of this gas after the change.

The ratio between the volume of this gas before and after the change would thus be [tex]\displaystyle \frac{V_1}{V_2}[/tex].

The ratio between the pressure of this gas before and after this change would be [tex]\displaystyle \frac{P_1}{P_2}[/tex].

Because the volume of a given mass of (ideal) gas varies inversely with pressure, these two ratios should be reciprocal of each other. That is:

[tex]\displaystyle \frac{V_1}{V_2} = \frac{1}{\displaystyle \displaystyle \left(\frac{P_1}{P_2}\right)}[/tex].

In other words:

[tex]\displaystyle \frac{V_1}{V_2} = \frac{P_2}{P_1}[/tex].

Rearrange and solve for [tex]V_2[/tex], the volume of this gas after the change:

[tex]\displaystyle V_1 = V_2\cdot \left(\frac{P_2}{P_1}\right)[/tex].

[tex]V_2 = \displaystyle V_1 \cdot \left(\frac{P_1}{P_2}\right)[/tex].

From the question:

  • Volume of this gas before the change: [tex]V_1 = 2\; \rm m^3[/tex].
  • Pressure of this gas before the change: [tex]P_1 = 500\; \rm N \cdot m^{-2}[/tex].
  • Pressure of this gas after the change: [tex]P_2 = 400\; \rm N \cdot m^{-2}[/tex].

Solve for [tex]V_2[/tex]:

[tex]\begin{aligned} V_2 &= V_1 \cdot \left(\frac{P_1}{P_2}\right) \\ &= 2\; \rm m^3 \times \frac{500\; \rm N \cdot m^{-2}}{400\; \rm N \cdot m^{-2}} = 2.5\; \rm m^3\end{aligned}[/tex].

ACCESS MORE