Respuesta :
Answer:
[tex]2.5\; \rm m^3[/tex].
Step-by-step explanation:
Let [tex]V_1[/tex] and [tex]P_1[/tex] denote the volume and pressure of this gas before the change. Let [tex]V_2[/tex] and [tex]P_2[/tex]denote the pressure of this gas after the change.
The ratio between the volume of this gas before and after the change would thus be [tex]\displaystyle \frac{V_1}{V_2}[/tex].
The ratio between the pressure of this gas before and after this change would be [tex]\displaystyle \frac{P_1}{P_2}[/tex].
Because the volume of a given mass of (ideal) gas varies inversely with pressure, these two ratios should be reciprocal of each other. That is:
[tex]\displaystyle \frac{V_1}{V_2} = \frac{1}{\displaystyle \displaystyle \left(\frac{P_1}{P_2}\right)}[/tex].
In other words:
[tex]\displaystyle \frac{V_1}{V_2} = \frac{P_2}{P_1}[/tex].
Rearrange and solve for [tex]V_2[/tex], the volume of this gas after the change:
[tex]\displaystyle V_1 = V_2\cdot \left(\frac{P_2}{P_1}\right)[/tex].
[tex]V_2 = \displaystyle V_1 \cdot \left(\frac{P_1}{P_2}\right)[/tex].
From the question:
- Volume of this gas before the change: [tex]V_1 = 2\; \rm m^3[/tex].
- Pressure of this gas before the change: [tex]P_1 = 500\; \rm N \cdot m^{-2}[/tex].
- Pressure of this gas after the change: [tex]P_2 = 400\; \rm N \cdot m^{-2}[/tex].
Solve for [tex]V_2[/tex]:
[tex]\begin{aligned} V_2 &= V_1 \cdot \left(\frac{P_1}{P_2}\right) \\ &= 2\; \rm m^3 \times \frac{500\; \rm N \cdot m^{-2}}{400\; \rm N \cdot m^{-2}} = 2.5\; \rm m^3\end{aligned}[/tex].