Pls answer its 2 in the morning I’m tryna get sleeppp
4
Mis the midpoint of CD. Given
the coordinates of one endpoint
C(10,-5) and the midpoint
M(4,0), find the coordinates of
the other endpoint D of CD.
a) (7.)
b) (-2)
c) (-2,5)
d) (7,5)
e) (1,1)

Pls answer its 2 in the morning Im tryna get sleeppp 4 Mis the midpoint of CD Given the coordinates of one endpoint C105 and the midpoint M40 find the coordinat class=

Respuesta :

Answer:

(-2,5)

Step-by-step explanation:

use formula: m= ([tex]\frac{x^{1}+x^{2} }{2} , \frac{y^{1}+y^{2} }{2}[/tex])

midpoint(m) equals (4,0) and C is (10,-5)

C represents [tex](x^{1} ,y^{1})[/tex] and other endpoint D represents [tex](x^{2}, y^{2} )[/tex] so:

(4,0) = [tex](\frac{10+x^{2} }{2} , \frac{-5+y^{2} }{2} )[/tex]                  

4 = [tex]\frac{10+x^{2} }{2}[/tex]

[tex]4*2 = (\frac{10+x^{2} }{2} )2[/tex]      Get rid of 2 by multiplying both sides by 2

8 = [tex]10 + x^{2}[/tex]               Subtract both sides by 10

[tex]x^{2} = -2[/tex]                x coordinate of D = -2

To find y coordinate of D:

0 = [tex]\frac{-5+y^{2} }{2}[/tex]                    Get rid of 2 by multiply both sides by 2

0 = [tex]-5 + y^{2}[/tex]                    Add both sides by 5

[tex]y^{2} = 5[/tex]                          y coordinate of D = 5

So if x-coordinate of D= -2 and y-coordinate of D=5, the coordinates for D is (-2,5)

ACCESS MORE