Answer:
(-2,5)
Step-by-step explanation:
use formula: m= ([tex]\frac{x^{1}+x^{2} }{2} , \frac{y^{1}+y^{2} }{2}[/tex])
midpoint(m) equals (4,0) and C is (10,-5)
C represents [tex](x^{1} ,y^{1})[/tex] and other endpoint D represents [tex](x^{2}, y^{2} )[/tex] so:
(4,0) = [tex](\frac{10+x^{2} }{2} , \frac{-5+y^{2} }{2} )[/tex]
4 = [tex]\frac{10+x^{2} }{2}[/tex]
[tex]4*2 = (\frac{10+x^{2} }{2} )2[/tex] Get rid of 2 by multiplying both sides by 2
8 = [tex]10 + x^{2}[/tex] Subtract both sides by 10
[tex]x^{2} = -2[/tex] x coordinate of D = -2
To find y coordinate of D:
0 = [tex]\frac{-5+y^{2} }{2}[/tex] Get rid of 2 by multiply both sides by 2
0 = [tex]-5 + y^{2}[/tex] Add both sides by 5
[tex]y^{2} = 5[/tex] y coordinate of D = 5
So if x-coordinate of D= -2 and y-coordinate of D=5, the coordinates for D is (-2,5)