Given:
f(−4)=6
Slope of f=−6
To find:
The linear function with the given properties.
Solution:
We have,
f(−4)=6
It means, the value of linear function is 6 at x=-4. So, the linear function passes through the point (-4,6).
Slope of f=−6
The point slope form of a linear function is
[tex]y-y_1=m(x-x_1)[/tex]
where, m is slope of the linear function.
On substituting the values, we get
[tex]y-6=(-6)(x-(-4))[/tex]
[tex]y-6=-6(x+4)[/tex]
[tex]y-6=-6x-24[/tex]
Add 6 on both sides.
[tex]y-6+6=-6x-24+6[/tex]
[tex]y=-6x-18[/tex]
The function form of this linear equation is
[tex]f(x)=-6x-18[/tex]
Therefore, the required function is [tex]f(x)=-6x-18[/tex].