Respuesta :
If PV = 800, then P can be written as a function of V,
P(V) = 800 / V
(a) The average rate of change of P as V increases from 200 to 250 in³ is then
(P (250) - P (200)) / (250 in³ - 200 in³) = (3.2 lb/in² - 4lb/in²) / (50 in³)
... = -0.016 (lb/in²)/in³
(Or -0.016 lb/in⁵, but I figure writing the rate as (units of pressure) per (unit volume) makes more sense.)
(b) We can also write V as a function of P :
V(P) = 800 / P
Take the derivative:
V'(P) = - 800 / P²
which immediately demonstrates that V'(P) ∝ 1 / P², as required. (The fish-looking symbol, ∝, means "is proportional to".)
If differentiating is supposed to be more involved, you can use the limit definition:
[tex]V'(P)=\displaystyle\lim_{h\to0}\frac{V(P+h)-V(P)}h[/tex]
[tex]V'(P)=\displaystyle\lim_{h\to0}\frac{\frac{800}{P+h}-\frac{800}P}h[/tex]
[tex]V'(P)=\displaystyle\lim_{h\to0}\frac{\frac{800P-800(P+h)}{P(P+h)}}h[/tex]
[tex]V'(P)=\displaystyle800\lim_{h\to0}\frac{-\frac h{P(P+h)}}h[/tex]
[tex]V'(P)=\displaystyle-800\lim_{h\to0}\frac1{P(P+h)}=-\dfrac{800}{P^2}[/tex]
Part(a): The average rate of change of [tex]\frac{dP}{dV}[/tex] is [tex]-0.0164 lb/in^{2}[/tex]
Part(b): The required answer is [tex]\frac{dV}{dP} \infty \frac{1}{P^{2}}[/tex]
Part(a):
Given,
[tex]PV=800[/tex]
Differentiating the above equation with respect to [tex]V[/tex].
[tex]\frac{dP}{dV}=-\frac{P}{V}[/tex]
Now, at [tex]V=200 in^{3}[/tex] and [tex]P=4 lb/in^2[/tex]
At [tex]V=250 in^3[/tex] and [tex]P=\frac{80}{25} lb/in^2[/tex]
Hence, we can write,
[tex]\frac{dP}{dV}[/tex] at [tex]V=200[/tex] we get,
[tex]\frac{-1}{200}=\frac{-1}{50}[/tex]
Again [tex]\frac{dP}{dV}[/tex] at [tex]V=250[/tex] we get,
[tex]\frac{-80}{25\times 250}[/tex]
So, the average rate of change of [tex]\frac{dP}{dV}[/tex] is,
[tex]\frac{-\frac{1}{50}- \frac{8}{25\times25} }2\\=-\frac{1}{100}-\frac{1}{625}\\=-0.0164 lb/in^2[/tex]
Part(b):
Given,[tex]PV=800[/tex] then,
[tex]V=\frac{800}{P}[/tex]
Now,[tex]\frac{dV}{dP} =-\frac{800}{P^2}[/tex]
Then the above implies,
[tex]\frac{dV}{dP} \infty \frac{1}{P^{2}}[/tex]
Learn more:https://brainly.com/question/12817429