Respuesta :

Answer:

cosФ = [tex]\frac{1}{\sqrt{65}}[/tex] , sinФ = [tex]-\frac{8}{\sqrt{65}}[/tex] , tanФ = -8, secФ = [tex]\sqrt{65}[/tex] , cscФ = [tex]-\frac{\sqrt{65}}{8}[/tex] , cotФ = [tex]-\frac{1}{8}[/tex]

Step-by-step explanation:

If a point (x, y) lies on the terminal side of angle Ф in standard position, then the six trigonometry functions are:

  1. cosФ = [tex]\frac{x}{r}[/tex]
  2. sinФ = [tex]\frac{y}{r}[/tex]
  3. tanФ = [tex]\frac{y}{x}[/tex]
  4. secФ = [tex]\frac{r}{x}[/tex]
  5. cscФ = [tex]\frac{r}{y}[/tex]
  6. cotФ = [tex]\frac{x}{y}[/tex]
  • Where r = [tex]\sqrt{x^{2}+y^{2} }[/tex] (the length of the terminal side from the origin to point (x, y)
  • You should find the quadrant of (x, y) to adjust the sign of each function

∵ Point (1, -8) lies on the terminal side of angle Ф in standard position

∵ x is positive and y is negative

→ That means the point lies on the 4th quadrant

∴ Angle Ф is on the 4th quadrant

∵ In the 4th quadrant cosФ and secФ only have positive values

∴ sinФ, secФ, tanФ, and cotФ have negative values

→ let us find r

∵ r = [tex]\sqrt{x^{2}+y^{2} }[/tex]

∵ x = 1 and y = -8

∴ r = [tex]\sqrt{x} \sqrt{(1)^{2}+(-8)^{2}}=\sqrt{1+64}=\sqrt{65}[/tex]

→ Use the rules above to find the six trigonometric functions of Ф

∵ cosФ = [tex]\frac{x}{r}[/tex]

∴ cosФ = [tex]\frac{1}{\sqrt{65}}[/tex]

∵ sinФ = [tex]\frac{y}{r}[/tex]

∴ sinФ = [tex]-\frac{8}{\sqrt{65}}[/tex]

∵ tanФ = [tex]\frac{y}{x}[/tex]

∴ tanФ = [tex]-\frac{8}{1}[/tex] = -8

∵ secФ = [tex]\frac{r}{x}[/tex]

∴ secФ = [tex]\frac{\sqrt{65}}{1}[/tex] = [tex]\sqrt{65}[/tex]

∵ cscФ = [tex]\frac{r}{y}[/tex]

∴ cscФ = [tex]-\frac{\sqrt{65}}{8}[/tex]

∵ cotФ = [tex]\frac{x}{y}[/tex]

∴ cotФ = [tex]-\frac{1}{8}[/tex]