Respuesta :
Answer:
cosФ = [tex]\frac{1}{\sqrt{65}}[/tex] , sinФ = [tex]-\frac{8}{\sqrt{65}}[/tex] , tanФ = -8, secФ = [tex]\sqrt{65}[/tex] , cscФ = [tex]-\frac{\sqrt{65}}{8}[/tex] , cotФ = [tex]-\frac{1}{8}[/tex]
Step-by-step explanation:
If a point (x, y) lies on the terminal side of angle Ф in standard position, then the six trigonometry functions are:
- cosФ = [tex]\frac{x}{r}[/tex]
- sinФ = [tex]\frac{y}{r}[/tex]
- tanФ = [tex]\frac{y}{x}[/tex]
- secФ = [tex]\frac{r}{x}[/tex]
- cscФ = [tex]\frac{r}{y}[/tex]
- cotФ = [tex]\frac{x}{y}[/tex]
- Where r = [tex]\sqrt{x^{2}+y^{2} }[/tex] (the length of the terminal side from the origin to point (x, y)
- You should find the quadrant of (x, y) to adjust the sign of each function
∵ Point (1, -8) lies on the terminal side of angle Ф in standard position
∵ x is positive and y is negative
→ That means the point lies on the 4th quadrant
∴ Angle Ф is on the 4th quadrant
∵ In the 4th quadrant cosФ and secФ only have positive values
∴ sinФ, secФ, tanФ, and cotФ have negative values
→ let us find r
∵ r = [tex]\sqrt{x^{2}+y^{2} }[/tex]
∵ x = 1 and y = -8
∴ r = [tex]\sqrt{x} \sqrt{(1)^{2}+(-8)^{2}}=\sqrt{1+64}=\sqrt{65}[/tex]
→ Use the rules above to find the six trigonometric functions of Ф
∵ cosФ = [tex]\frac{x}{r}[/tex]
∴ cosФ = [tex]\frac{1}{\sqrt{65}}[/tex]
∵ sinФ = [tex]\frac{y}{r}[/tex]
∴ sinФ = [tex]-\frac{8}{\sqrt{65}}[/tex]
∵ tanФ = [tex]\frac{y}{x}[/tex]
∴ tanФ = [tex]-\frac{8}{1}[/tex] = -8
∵ secФ = [tex]\frac{r}{x}[/tex]
∴ secФ = [tex]\frac{\sqrt{65}}{1}[/tex] = [tex]\sqrt{65}[/tex]
∵ cscФ = [tex]\frac{r}{y}[/tex]
∴ cscФ = [tex]-\frac{\sqrt{65}}{8}[/tex]
∵ cotФ = [tex]\frac{x}{y}[/tex]
∴ cotФ = [tex]-\frac{1}{8}[/tex]