please help. Free the denominator of the fractionfrom irrationality:
[tex] \frac{2}{5 \sqrt{3} } [/tex]
[tex] \frac{ \sqrt{5 } + 2 }{ \sqrt{5} - 2} [/tex]

Respuesta :

Answer:

see explanation

Step-by-step explanation:

Given

[tex]\frac{2}{5\sqrt{3} }[/tex]

To rationalise the denominator, multiply the numerator/ denominator by [tex]\sqrt{3}[/tex]

= [tex]\frac{2\sqrt{3} }{5\sqrt{3}(\sqrt{3}) }[/tex]

= [tex]\frac{2\sqrt{3} }{15}[/tex]

-----------------------------------------------------------------------

Given

[tex]\frac{\sqrt{5}+2 }{\sqrt{5}-2 }[/tex]

Multiply the numerator/ denominator by the conjugate of the denominator.

The conjugate of [tex]\sqrt{5}[/tex] - 2 is [tex]\sqrt{5}[/tex] + 2 , then

= [tex]\frac{(\sqrt{5}+2)(\sqrt{5}+2) }{(\sqrt{5}-2)(\sqrt{5}+2) }[/tex] ← expand numerator/denominator using FOIL

= [tex]\frac{5+4\sqrt{5}+4 }{5-4}[/tex]

= [tex]\frac{9+4\sqrt{5} }{1}[/tex]

= 9 + 4[tex]\sqrt{5}[/tex]

ACCESS MORE