[tex]\large\underline{\underline{\red{\sf \blue{\longmapsto} Step\:-\:by\:-\:step\: Explanation:-}}}[/tex]
As per the data in Question,
Using the third equation of motion :-
[tex]\boxed{\red{\bf\purple{\dag}\:\:2as\:=\:v^2\:-\:u^2}}[/tex]
Substituting the respective values ,
⇒ 2as = v² - u² .
⇒ 2 × 3 × 54 = v² - 8²
⇒ 324 + 64 = v² .
⇒ v² = 388.
⇒ v = √388 .
⇒ v = 19.69 m/s ≈ 20m/s .
Hence the required answer is 19.69 m/s.