Answer:
[tex]m=\frac{1}{6}[/tex] (Parallel)
[tex]m=-6[/tex] (Perpendicular)
Step-by-step explanation:
Slope Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Simply plug in the 2 coordinates into the slope formula to find slope m:
[tex]m=\frac{-3-(-2)}{1-7}[/tex]
[tex]m=\frac{-3+2}{-6}[/tex]
[tex]m=\frac{-1}{-6}[/tex]
[tex]m=\frac{1}{6}[/tex]
A parallel line always has the same slope as the original.
[tex]m=\frac{1}{6}[/tex] (Original)
[tex]m=\frac{1}{6}[/tex] (Parallel)
A perpendicular line always has the negative reciprocal slope of the original.
[tex]m=\frac{1}{6}[/tex] (Original)
[tex]m=-6[/tex] (Perpendicular)