Respuesta :
Answer:
Center of circle: (1, -2)
Radius: √6
Step-by-step explanation:
First, we need to isolate the constant:
[tex]4x^2 + 4y^2 - 8x + 16y = 4[/tex]
Then, we can divide the whole equation by 4:
[tex]x^2+y^2-2x+4y=1[/tex]
Then, we can complete the square(reminder: (a+b)^2 = a^2 + 2ab + b^2)
[tex](x^2-2x)+(y^2+4y)=1\\(x^2-2x+1)+(y^2+4y)=1+1\\(x^2-2x+1)+(y^2+4y+4)=1+1+4\\(x-1)^2+(y+2)^2=6[/tex]
Now that we got the standard equation of the circle, we can find the center and radius by using the equation [tex](x-h)^2+(y-k)^2=r^2[/tex], where (h, k) is the coordinate of the center, and r is the radius.
Therefore, the center of the circle is (1, -2), and the radius of the circle is √6.
The center of the circle is (1,-2) and the radius is [tex]\sqrt{6}[/tex].
Important information:
- The given equation of a circle is [tex]4x^2+4y^2-8x+16y-4=0[/tex].
Circle:
The standard equation of the circle is:
[tex](x-h)^2+(y-k)^2=r^2[/tex] ...(i)
Where, [tex](h,k)[/tex] is center and [tex]r[/tex] is the radius.
The given equation can be written as:
[tex]4(x^2+y^2-2x+4y-1)=0[/tex]
[tex](x^2-2x)+(y^2+4y)=1[/tex]
Add square of half of coefficients of [tex]x[/tex] and [tex]y[/tex].
[tex]\left(x^2-2x+1^2\right)+(y^2+4y+2^2)=1+1^2+2^2[/tex]
[tex](x-1)^2+(y+2)^2=1+1+4[/tex]
[tex](x-1)^2+(y+2)^2=6[/tex]
[tex](x-1)^2+(y+2)^2=(\sqrt{6})^2[/tex] ...(ii)
On comparing (i) and (ii), we get
[tex]h=1[/tex]
[tex]k=-2[/tex]
[tex]r=\sqrt{6}[/tex]
Therefore, the center of the circle is (1,-2) and the radius is [tex]\sqrt{6}[/tex].
Find out more about 'Circle' here:
https://brainly.com/question/2495058
