Use the quadratic formula to solve. SHOW ALL STEPS FOR FULL CREDIT. Make sure that the final answer has a simplified radical. 2x² -10x +3

Respuesta :

Answer:

whats that

Step-by-step explanation:

Answer:

[tex]x=\frac{5+\sqrt{19}}{2}\text{ and } x=\frac{5-\sqrt{19}}{2}[/tex]

Step-by-step explanation:

If we have the standard form [tex]ax^2+bx+c[/tex], then we can use the quadratic formula:

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

First, let's identify our coefficients. We have [tex]2x^2-10x+3[/tex].

This can be rewritten as [tex](2)x^2+(-10)x+(3)[/tex].

Therefore, a=2, b=-10, and c=3.

Substitute these values into the quadratic formula. This yields:

[tex]x=\frac{-(-10)\pm\sqrt{(-10)^2-4(2)(3)}}{2(2)}[/tex]

From here, simplify. Evaluate the expression under the square root:

[tex]x=\frac{10\pm\sqrt{100-24}}{4}[/tex]

Evaluate:

[tex]x=\frac{10\pm\sqrt{76}}{4}[/tex]

Note that:

[tex]\sqrt{76}=\sqrt{4\cdot 19}=\sqrt{4}\cdot\sqrt{19}=2\sqrt{19}[/tex]

Therefore:

[tex]x=\frac{10\pm2\sqrt{19}}{4}[/tex]

We can factor out a 2 from both the numerator and the denominator:

[tex]x=\frac{2(5\pm\sqrt{19})}{2(2)}[/tex]

Simplify:

[tex]x=\frac{5\pm\sqrt{19}}{2}[/tex]

Therefore, our roots are:

[tex]x=\frac{5+\sqrt{19}}{2}\text{ and } x=\frac{5-\sqrt{19}}{2}[/tex]

ACCESS MORE